Extensions 1→N→G→Q→1 with N=C22×Q8 and Q=S3

Direct product G=N×Q with N=C22×Q8 and Q=S3
dρLabelID
C22×S3×Q896C2^2xS3xQ8192,1517

Semidirect products G=N:Q with N=C22×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×Q8)⋊1S3 = Q83S4φ: S3/C1S3 ⊆ Out C22×Q8246(C2^2xQ8):1S3192,976
(C22×Q8)⋊2S3 = C23.16S4φ: S3/C1S3 ⊆ Out C22×Q832(C2^2xQ8):2S3192,980
(C22×Q8)⋊3S3 = C22×GL2(𝔽3)φ: S3/C1S3 ⊆ Out C22×Q832(C2^2xQ8):3S3192,1475
(C22×Q8)⋊4S3 = C2×Q8.D6φ: S3/C1S3 ⊆ Out C22×Q832(C2^2xQ8):4S3192,1476
(C22×Q8)⋊5S3 = Q8×S4φ: S3/C1S3 ⊆ Out C22×Q8246-(C2^2xQ8):5S3192,1477
(C22×Q8)⋊6S3 = Q84S4φ: S3/C1S3 ⊆ Out C22×Q8246(C2^2xQ8):6S3192,1478
(C22×Q8)⋊7S3 = Q8⋊S4φ: S3/C1S3 ⊆ Out C22×Q8246(C2^2xQ8):7S3192,1490
(C22×Q8)⋊8S3 = (C3×Q8)⋊13D4φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):8S3192,786
(C22×Q8)⋊9S3 = (C22×Q8)⋊9S3φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):9S3192,790
(C22×Q8)⋊10S3 = C22×Q82S3φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):10S3192,1366
(C22×Q8)⋊11S3 = C2×Q8.11D6φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):11S3192,1367
(C22×Q8)⋊12S3 = C2×D63Q8φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):12S3192,1372
(C22×Q8)⋊13S3 = C2×C12.23D4φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):13S3192,1373
(C22×Q8)⋊14S3 = Q8×C3⋊D4φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):14S3192,1374
(C22×Q8)⋊15S3 = C6.442- 1+4φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):15S3192,1375
(C22×Q8)⋊16S3 = C6.452- 1+4φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):16S3192,1376
(C22×Q8)⋊17S3 = C2×Q8.15D6φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8):17S3192,1519
(C22×Q8)⋊18S3 = C22×Q83S3φ: trivial image96(C2^2xQ8):18S3192,1518

Non-split extensions G=N.Q with N=C22×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×Q8).1S3 = A42Q16φ: S3/C1S3 ⊆ Out C22×Q8486-(C2^2xQ8).1S3192,975
(C22×Q8).2S3 = C2×Q8⋊Dic3φ: S3/C1S3 ⊆ Out C22×Q864(C2^2xQ8).2S3192,977
(C22×Q8).3S3 = C23.14S4φ: S3/C1S3 ⊆ Out C22×Q832(C2^2xQ8).3S3192,978
(C22×Q8).4S3 = C23.15S4φ: S3/C1S3 ⊆ Out C22×Q832(C2^2xQ8).4S3192,979
(C22×Q8).5S3 = C22×CSU2(𝔽3)φ: S3/C1S3 ⊆ Out C22×Q864(C2^2xQ8).5S3192,1474
(C22×Q8).6S3 = Q8.1S4φ: S3/C1S3 ⊆ Out C22×Q8486-(C2^2xQ8).6S3192,1489
(C22×Q8).7S3 = C2×Q82Dic3φ: S3/C3C2 ⊆ Out C22×Q8192(C2^2xQ8).7S3192,783
(C22×Q8).8S3 = (C6×Q8)⋊6C4φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8).8S3192,784
(C22×Q8).9S3 = C2×C12.10D4φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8).9S3192,785
(C22×Q8).10S3 = (C2×C6)⋊8Q16φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8).10S3192,787
(C22×Q8).11S3 = (C6×Q8)⋊7C4φ: S3/C3C2 ⊆ Out C22×Q8192(C2^2xQ8).11S3192,788
(C22×Q8).12S3 = C22.52(S3×Q8)φ: S3/C3C2 ⊆ Out C22×Q8192(C2^2xQ8).12S3192,789
(C22×Q8).13S3 = C22×C3⋊Q16φ: S3/C3C2 ⊆ Out C22×Q8192(C2^2xQ8).13S3192,1368
(C22×Q8).14S3 = C2×Dic3⋊Q8φ: S3/C3C2 ⊆ Out C22×Q8192(C2^2xQ8).14S3192,1369
(C22×Q8).15S3 = C6.422- 1+4φ: S3/C3C2 ⊆ Out C22×Q896(C2^2xQ8).15S3192,1371
(C22×Q8).16S3 = C2×Q8×Dic3φ: trivial image192(C2^2xQ8).16S3192,1370

׿
×
𝔽