Extensions 1→N→G→Q→1 with N=C22xQ8 and Q=S3

Direct product G=NxQ with N=C22xQ8 and Q=S3
dρLabelID
C22xS3xQ896C2^2xS3xQ8192,1517

Semidirect products G=N:Q with N=C22xQ8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22xQ8):1S3 = Q8:3S4φ: S3/C1S3 ⊆ Out C22xQ8246(C2^2xQ8):1S3192,976
(C22xQ8):2S3 = C23.16S4φ: S3/C1S3 ⊆ Out C22xQ832(C2^2xQ8):2S3192,980
(C22xQ8):3S3 = C22xGL2(F3)φ: S3/C1S3 ⊆ Out C22xQ832(C2^2xQ8):3S3192,1475
(C22xQ8):4S3 = C2xQ8.D6φ: S3/C1S3 ⊆ Out C22xQ832(C2^2xQ8):4S3192,1476
(C22xQ8):5S3 = Q8xS4φ: S3/C1S3 ⊆ Out C22xQ8246-(C2^2xQ8):5S3192,1477
(C22xQ8):6S3 = Q8:4S4φ: S3/C1S3 ⊆ Out C22xQ8246(C2^2xQ8):6S3192,1478
(C22xQ8):7S3 = Q8:S4φ: S3/C1S3 ⊆ Out C22xQ8246(C2^2xQ8):7S3192,1490
(C22xQ8):8S3 = (C3xQ8):13D4φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):8S3192,786
(C22xQ8):9S3 = (C22xQ8):9S3φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):9S3192,790
(C22xQ8):10S3 = C22xQ8:2S3φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):10S3192,1366
(C22xQ8):11S3 = C2xQ8.11D6φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):11S3192,1367
(C22xQ8):12S3 = C2xD6:3Q8φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):12S3192,1372
(C22xQ8):13S3 = C2xC12.23D4φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):13S3192,1373
(C22xQ8):14S3 = Q8xC3:D4φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):14S3192,1374
(C22xQ8):15S3 = C6.442- 1+4φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):15S3192,1375
(C22xQ8):16S3 = C6.452- 1+4φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):16S3192,1376
(C22xQ8):17S3 = C2xQ8.15D6φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8):17S3192,1519
(C22xQ8):18S3 = C22xQ8:3S3φ: trivial image96(C2^2xQ8):18S3192,1518

Non-split extensions G=N.Q with N=C22xQ8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22xQ8).1S3 = A4:2Q16φ: S3/C1S3 ⊆ Out C22xQ8486-(C2^2xQ8).1S3192,975
(C22xQ8).2S3 = C2xQ8:Dic3φ: S3/C1S3 ⊆ Out C22xQ864(C2^2xQ8).2S3192,977
(C22xQ8).3S3 = C23.14S4φ: S3/C1S3 ⊆ Out C22xQ832(C2^2xQ8).3S3192,978
(C22xQ8).4S3 = C23.15S4φ: S3/C1S3 ⊆ Out C22xQ832(C2^2xQ8).4S3192,979
(C22xQ8).5S3 = C22xCSU2(F3)φ: S3/C1S3 ⊆ Out C22xQ864(C2^2xQ8).5S3192,1474
(C22xQ8).6S3 = Q8.1S4φ: S3/C1S3 ⊆ Out C22xQ8486-(C2^2xQ8).6S3192,1489
(C22xQ8).7S3 = C2xQ8:2Dic3φ: S3/C3C2 ⊆ Out C22xQ8192(C2^2xQ8).7S3192,783
(C22xQ8).8S3 = (C6xQ8):6C4φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8).8S3192,784
(C22xQ8).9S3 = C2xC12.10D4φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8).9S3192,785
(C22xQ8).10S3 = (C2xC6):8Q16φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8).10S3192,787
(C22xQ8).11S3 = (C6xQ8):7C4φ: S3/C3C2 ⊆ Out C22xQ8192(C2^2xQ8).11S3192,788
(C22xQ8).12S3 = C22.52(S3xQ8)φ: S3/C3C2 ⊆ Out C22xQ8192(C2^2xQ8).12S3192,789
(C22xQ8).13S3 = C22xC3:Q16φ: S3/C3C2 ⊆ Out C22xQ8192(C2^2xQ8).13S3192,1368
(C22xQ8).14S3 = C2xDic3:Q8φ: S3/C3C2 ⊆ Out C22xQ8192(C2^2xQ8).14S3192,1369
(C22xQ8).15S3 = C6.422- 1+4φ: S3/C3C2 ⊆ Out C22xQ896(C2^2xQ8).15S3192,1371
(C22xQ8).16S3 = C2xQ8xDic3φ: trivial image192(C2^2xQ8).16S3192,1370

׿
x
:
Z
F
o
wr
Q
<